Header Ads

IBM rethinking redesign future computer chips don't have silicon with $3 billion investment

The computer design initiative could pave the way for functional quantum and cognitive computers that mimic brain functionality.

"The basic architecture of the computer has remained unchanged since the 1940s. We feel, given the kinds of problems we see today, [that] this is the time to start looking for new forms of computing," said Supratik Guha, director of physical sciences for IBM Research.

IBM will pour US$3 billion into computing and chip materials research over the next five years, as it rethinks computer design and looks to a future that may not involve silicon chips.

Silicon design has stalled and the ability to shrink chips is reaching its limit. IBM is looking at graphene, carbon nanotubes and other materials to replace silicon in computers, and will try to develop chips that can be scaled down to the atomic level.



IBM's goal is to provide the building blocks for systems that can intelligently process vast amounts of data while consuming less power, said Tom Rosamilia, senior vice president for Systems and Technology Group at IBM.
Such computers could benefit areas such as cancer research, weather modeling and providing more intelligent services over the cloud. Accelerators like graphics processors are improving computer performance in the short term, but shrinking silicon-based processors to boost performance and reduce power is becoming more complex, Rosamilia said.

The investment comes as Moore's Law runs its course. Intel co-founder Gordon Moore posited that the number of transistors on an integrated circuit would double every two years and while that has held steady, it is expected to be outdated within the next decade. Engineers are rethinking chip design to increase performance, especially as chips go into smaller geometries. Intel is preparing to ship PC chips made using the 14-nanometer process and has plans to move to the 10-nanometer process in the coming years.

Chip making was revolutionized when scientists purified silicon in 1950, but it will be harder to etch more features on chips when the 7-nanometer process and beyond, as the industry moves toward the atomic level, Guha said.

"What will replace it at this point is unclear," Guha said.
Carbon nanotubes, which are cylinders made of carbon atoms, show the most promise as a silicon replacement. IBM researchers are shrinking the size of carbon nanotubes, but challenges remain in cooling them down and there is considerable debate around safety concerns. However, there is consensus that technical problems could be solved, Guha said.

Brain and quantum computers also involve research on computer behavior.
IBM is developing computers that mimic brain-like functionality as part of its Synapse program. The computer makes an approximation of how the brain processes information in parallel via trillions of connections, which are the synapses. IBM in 2011 demonstrated a neural chip with programmable and learning synapses that have navigation and pattern recognition abilities. IBM's goal is to build a neural chip that mimics the human brain, with 10 billion neurons and 100 trillion synapses but that uses just 1 kilowatt of power.
At the heart of quantum computers are quantum bits (qubits), which hold values of 1 and 0, which are unlike bits in conventional computers that are at a state of 1 or 0 at any given time. By storing and sharing data in more states, the qubits could speed up calculations.

No comments

blogmytuts. Powered by Blogger.